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Unit 5 
Process Synchronization

 

Main Topics
Background

The Critical-Section Problem

Peterson’s Solution

Synchronization Hardware

Mutex Locks

Semaphores

Classic Problems of Synchronization

 



Objectives

To present the concept of process synchronization.

To introduce the critical-section problem, whose solutions can be

used to ensure the consistency of shared data

To explore several tools that are used to solve process

synchronization problems

To be familiar with several classical process-synchronization

problems

 

Background

Processes can execute concurrently

May be interrupted at any time, partially completing

execution

Concurrent access to shared data may result in data

inconsistency

Maintaining data consistency requires mechanisms to ensure

the orderly execution of cooperating processes

 



Illustration of the problem:
Suppose that we wanted to provide a solution to the consumer-

producer problem that fills all the buffers.

We can do so by having an integer counter that keeps track of the

number of full buffers.

Initially, counter is set to 0. It is incremented by the producer after

it produces a new buffer and is decremented by the consumer after

it consumes a buffer.

 

Illustration of the problem (producer consumer )
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Producer
while (true){

/* produce an item in 

     next produced */ 

 while(counter==BUFFER_SIZE; 

/* do nothing */ 

buffer[in]=next_produced; 

in=(in+1);//BUFFER_SIZE 

counter++;

}

Consumer
while (true){

while (counter == 0;

 /* do nothing */ 

next_consumed=buffer[out]; 

out=(out+1);//BUFFER_SIZE     

   counter--; 

 /*consume the item in

     next consumed */ 

} 

counter++ could be implemented as
register1 = counter

register1 = register1 + 1

counter = register1

Counter-- could be implemented as
register2 = counter

register2 = register2 - 1

counter = register

 



Producer Consumer Problem
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T5: consumer execute counter= register2 {counter= 4}

T0: producer execute register1 = counter {register1 = 5}

T1: producer execute register1 = register1+1 {register1 = 6}

T2: consumer execute register2 = counter {register2 = 5}

T3: consumer execute register2 = register2-1 {Register2 = 4}

T4: producer execute counter= register1 {counter= 6}
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Read Write Problem
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In the result

printer daemon will not 

notice anything wrong, 

but process B will never 

receive any output.

out - points to the next file to be printed;

in – points to the next free slot in the 

directory.
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A in critical region

B blocked
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B in critical region
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Critical Section Problem
Consider system of n processes {p0, p1, … pn-1}

Each process has critical section segment of code

Process may be changing common variables, updating table, writing 

file, etc

When one process in critical section, no other may be in its critical 

section

Critical section problem is to design protocol to solve this

Each process must ask permission to enter critical section in entry 

section, may follow critical section with exit section, then remainder 

section

 



Simple Tool Solution

Conceptually, any solution to

the critical section problem

can be viewed as to

constructing a simple tool,

called a “lock”

A process must acquire a lock

before entering a critical

section, and releases the lock

when it exits the critical

section
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do

    {

     acquire lock

     

     critical section

    

     release lock 

      

     remainder section

    } while (TRUE):

 

Solution to Critical-Section Problem

1.   Mutual Exclusion - If process Pi is 
executing in its critical section, 
then no other processes can be 
executing in their critical sections

 



Solution to Critical-Section Problem

2.   Progress - If no process is executing 
in its critical section and there exist 
some processes that wish to enter their 
critical section, then the selection of the 
processes that will enter the critical 
section next cannot be postponed 
indefinitely

 

Solution to Critical-Section Problem

3. Bounded Waiting - A bound must
exist on the number of times that
other processes are allowed to enter
their critical sections after a process
has made a request to enter its
critical section and before that
request is granted

 



Critical-Section Handling in OS 
Two approaches depending on if kernel is 

preemptive or non- preemptive 

Preemptive – allows preemption of 
process when running in kernel mode

Non-preemptive – runs until exits kernel 
mode, blocks, or voluntarily yields CPU

Essentially free of race conditions in 
kernel mode

 

Peterson’s Solution
The two processes share two variables:
int turn; 
Boolean flag[2]

The variable turn indicates whose turn it is to 
enter the critical section
The flag array is used to indicate if a process is 
ready to enter the critical section. flag[i] = true
implies that process Pi is ready!

Int turn boolean flag

 



Peterson's Solution
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Process i
while (true) 

{

flag[i] = TRUE;

turn = j;

while ( flag[j] && turn == j);

//CRITICAL SECTION

flag[i] = FALSE;

//REMAINDER SECTION

}

Process j
while (true) 

{

flag[j] = TRUE;

turn = i;

while ( flag[i] && turn == i);

//CRITICAL SECTION

flag[j] = FALSE;

//REMAINDER SECTION

}

Int turn boolean flag

 

Peterson’s Solution (Cont.)

Provable that the three CS requirement are
met:

1. Mutual exclusion is preserved

Pi enters CS only if:

either flag[j]=false or turn=i

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

 



Recall Peterson’s Solution:
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Process i
while (true) 

{

flag[i] = TRUE;

turn = j;

while ( flag[j] && turn == j);

//CRITICAL SECTION

flag[i] = FALSE;

//REMAINDER SECTION

}

Acquire 
a lock

Release the lock

 

Symmetric Multiprocessing Architecture 

Centralized Shared-Memory

  

 



A Dual-Core Design

Multi-chip and multicore

Systems containing all  

chips

Chassis containing 

multiple separate 

systems

  

 

Distributed Memory Multiprocessors

  

 



Synchronization Hardware

As discussed, software-based solutions (like 
Peterson’s Solution) are not guaranteed to work 
on modern computer architectures 

Many systems provide hardware support for 
synchronization 

Uniprocessor systems 

Multiprocessor systems
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Uniprocessor &Multiprocessor Systems

Disable interrupts

Currently running code would
execute without preemption

Generally too inefficient on
multiprocessor systems
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Memory Barriers 
Memory model are the memory guarantees that a computer

architecture makes to application programs.

Memory models may be either:

Strongly ordered – where a memory modification of one
processor is immediately visible to all other processors.

Weakly ordered – where a memory modification of one
processor may not be immediately visible to all other
processors.

A memory barrier is an instruction that forces any change
in memory to be propagated (made visible) to all other
processors.
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Recall Peterson’s Solution

Two threads share the data:

boolean flag = false; int x = 0; 

 Thread 1 performs 

while (!flag) ;

print x 

Thread 2 performs

x = 100; 

flag = true

What is the expected output?
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Recall Peterson’s Solution
After Instruction Reordering • 100 is the expected
output.

However, the operations for Thread 2 may be
reordered:

flag = true; x = 100;

If this occurs, the output may be 0!

The effects of instruction reordering in Peterson’s
Solution

This allows both processes to be in their critical section
at the same time!
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Solution using Memory Barrier

To ensure Thread 1 outputs 100:

Thread 1 now performs

while (!flag)

memory_barrier();

print x

Thread 2 now performs

x = 100;

memory_barrier();

flag = true
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Hardware Instructions

Special hardware instructions that allow us 

to either test-and-modify the content of a 

word, or to swap the contents of two words 

atomically (uninterruptibly.) 

Test-and-Set instruction 

Compare-and-Swap instruction
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Solution to Critical-section Problem Using 
Locks

do

    {

     acquire lock

     

     critical section

    

     release lock 

      

     remainder section

    } while (TRUE):

Modern machines provide special 
atomic hardware instructions

Atomic = non-interruptible

Either test memory word and set 
value

Or swap contents of two memory 
words

 



Solution to Critical-section Problem Using 
Locks

do

    {

     acquire lock

     

     critical section

    

     release lock 

      

     remainder section

    } while (TRUE):

Uniprocessors – could disable interrupts

Currently running code would execute 

without preemption

Generally too inefficient on 

multiprocessor systems

Operating systems using this not 

broadly scalable

 

Definition of test_and_set Instruction 

1.Executed atomically
2.Returns the original value of passed parameter
3.Set the new value of passed parameter to 
“TRUE”.

boolean TestAndSet (boolean *target)

 {

  boolean rv = *target;

  *target = TRUE;

  return rv:

 }

 



Solution using test_and_set()

do {

while (test_and_set(&lock)) 

 ; /* do nothing */ 

 /* critical section */ 

 lock = false; 

/* remainder section */ 

    } while (true); 

do {

while (test_and_set(&lock)) 

 ; /* do nothing */ 

 /* critical section */ 

 lock = false; 

/* remainder section */ 

    } while (true); P
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boolean TestAndSet (boolean *target)

 {

  boolean rv = *target;

  *target = TRUE;

  return rv:

 }

Atomic 
Operation

 

Compare and Swap CAS
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void Swap (boolean *a, boolean *b)

 {

   boolean temp = *a;

   *a = *b;

   *b = temp:

 }S
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Swap the content of two words 

The Swap instruction operates on the contents of 

two words; 

It is executed atomically.

A global Boolean variable lock is declared and is 

initialized to false. 

Each process also has a local Boolean variable key. 

 while (true)  

{

 key = TRUE;

 while ( key == TRUE)

 Swap (&lock, &key );

 //critical section

lock = FALSE;

//remainder section 

}M
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Atomic operation

TRUELock

Address 1000

FALSE
Address 2000

Key TRUE
Address 3000

Key

Process 1 Process 2

FALSELock

Address 1000

TRUE
Address 2000

Key TRUE
Address 3000

Key

Process 1 Process 2

Swap function uses 
two boolean variables
lock and key. 
Both lock and key variables
are initially initialized 
to false.

 



Solution using test_and_set()

do {

while (test_and_set(&lock)) 

 ; /* do nothing */ 

 /* critical section */ 

 lock = false; 

/* remainder section */ 

    } while (true); 
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Acquire 
a lock

Release the lock

 

Compare and Swap CAS
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 while (true)  

{

 key = TRUE;

 while ( key == TRUE)

 Swap (&lock, &key );

 //critical section

lock = FALSE;

//remainder section 

}M
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Acquire 
a lock

Release the lock

 



Mutex Locks
Protect a critical section by first acquire() a lock then

release() the lock

Boolean variable indicating if lock is available or not

Calls to acquire() and release() must be atomic

Usually implemented via hardware atomic instructions

But this solution requires busy waiting

This lock therefore called a spinlock

 

Mutex Locks

T1 T2 T3

A in critical region

B blocked in a 

busy waiting

Locked by A

P A

P B

Lock

A in non-critical region .

Locked by B   

B in critical region

acquire() {

 while (!available; 

   /* busy wait */ 

 available = false;

    } 

release() { 

  available=true; 

    } 

do { 

 acquire lock

   critical section

 release lock 

   remainder section 

 } while (true); 

 



Semaphore
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Semaphore
Synchronization tool that provides more

sophisticated ways (than Mutex locks)

for process to synchronize their

activities.

Semaphore S – integer variable can only

be accessed via two indivisible (atomic)

operations.

 



Semaphore as General Synchronization Tool
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wait (S) 

{ 

while S <= 0

; // no-op

    S--;

}

Synchronization tool that does not require busy 

waiting 

Semaphore S – integer variable that can be accessed 

only by two standard operations modify S: wait() 

and signal()

 Originally called P() and V()

Less complicated

Can only be accessed via two indivisible (atomic) 

operations

signal (S) 

{ 

 S++;}

V stands for verhogen (“increase”), 
P stands fro probeer (“try”)

A task desiring the semaphore performs a WAIT 

operation

If the semaphore is available 

(semaphore value > 0), the semaphore 

value is decremented, and task 

continues execution

If the semaphore s value is 0, the 

task performing a WAIT on the 

semaphore is placed in a waiting 

list

A semaphore is a key that the code 

acquires in order to continue execution

If a semaphore is already in use, the 

requesting task is suspended until the 

semaphore is released by its current 

owner

In other words, the requesting tasks 

says:  Give me the key. If someone else 

is using it, I am willing to wait for 

it! 

 

Semaphore as General Synchronization Tool
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wait (S) 

{ 

while S <= 0

; // no-op

    S--;

}

signal (S) 

{ 

 S++;}

Semaphore S;

//S initialized to 1

wait (S);

   {Critical      

Section}

signal (S);

 



Semaphore with no Busy waiting
wait(S)

{ 

  value--;

  if (value < 0)

  { 

    /*add this process 

    to waiting queue*/

    block();}

}

Signal (S)

{ 

  value++;

  if (value <= 0) 

  { 

   /*remove a process P 

   from the waiting queue*/

   wakeup(P);}

}

While a process is in its critical section, any other 

process that tries to enter its critical section must 

loop continuously in the entry code( busy waiting).

Rather than busy waiting, the process can block 

itself. 

The block() operation places a process into a 

waiting queue associated with the semaphore, and 

the state of the process is switched to the waiting 

state. 

Then, control is transferred to the CPU scheduler, 

which selects another process to execute.

A process should be restarted when some other 

process executes a signal() operation. 

The process is restarted by a wakeup() 

operation

The process is then placed in the ready queue.

 

Deadlock

Deadlock – two or more processes are waiting indefinitely for an 

event that can be caused by only one of the waiting processes

Let S and Q be two semaphores initialized to 1

P0
wait(S);

wait(Q);

     ...

signal(S);  

signal(Q);

P1
wait(Q);

wait(S);

     ...

signal(Q);   

signal(S);

 



Starvation

Starvation – indefinite blocking  

A process may never be removed from the 

semaphore queue in which it is suspended

 

Priority Inversion

Priority Inversion – Scheduling problem when 

lower-priority process holds a lock needed by 

higher-priority process

Solved via priority-inheritance protocol

 
 


