
28- - 6766 1

Unit 5
Process Synchronization

Main Topics
Background

The Critical-Section Problem

Peterson’s Solution

Synchronization Hardware

Mutex Locks

Semaphores

Classic Problems of Synchronization

Objectives

To present the concept of process synchronization.

To introduce the critical-section problem, whose solutions can be

used to ensure the consistency of shared data

To explore several tools that are used to solve process

synchronization problems

To be familiar with several classical process-synchronization

problems

Background

Processes can execute concurrently

May be interrupted at any time, partially completing

execution

Concurrent access to shared data may result in data

inconsistency

Maintaining data consistency requires mechanisms to ensure

the orderly execution of cooperating processes

Illustration of the problem:
Suppose that we wanted to provide a solution to the consumer-

producer problem that fills all the buffers.

We can do so by having an integer counter that keeps track of the

number of full buffers.

Initially, counter is set to 0. It is incremented by the producer after

it produces a new buffer and is decremented by the consumer after

it consumes a buffer.

Illustration of the problem (producer consumer)

11/1/2024

Producer
while (true){

/* produce an item in

 next produced */

 while(counter==BUFFER_SIZE;

/* do nothing */

buffer[in]=next_produced;

in=(in+1);//BUFFER_SIZE

counter++;

}

Consumer
while (true){

while (counter == 0;

 /* do nothing */

next_consumed=buffer[out];

out=(out+1);//BUFFER_SIZE

 counter--;

 /*consume the item in

 next consumed */

}

counter++ could be implemented as
register1 = counter

register1 = register1 + 1

counter = register1

Counter-- could be implemented as
register2 = counter

register2 = register2 - 1

counter = register

Producer Consumer Problem

11/1/2024

T5: consumer execute counter= register2 {counter= 4}

T0: producer execute register1 = counter {register1 = 5}

T1: producer execute register1 = register1+1 {register1 = 6}

T2: consumer execute register2 = counter {register2 = 5}

T3: consumer execute register2 = register2-1 {Register2 = 4}

T4: producer execute counter= register1 {counter= 6}

X

Read Write Problem

11/1/2024

Spooler directory

3

4

5

6

7

8

out

in

Contents of slot 7 depends on

A and B order.

ert

sfj

zam

Process A

next_free_slot

reads in and stores the value, 7

Process B

next_free_slot

B
 is

 id
le

CPU switches to process B

also reads in, and also gets a 7

stores the name of its file in slot 7 and

updates in to be an 8.

goes off and does other things.

A
 is

in
te

rr
u

p
te

d

CPU switches to process A

looks at next_free_slot, finds a 7 there,

and writes its file name in slot 7, erasing

the name that process B.

increase next_free_slot + 1

sets in to 8.

B
 is

 in
te

rr
u
p

te
d

o
r

w
a

iti
n

g
 o

r.
..

In the result

printer daemon will not

notice anything wrong,

but process B will never

receive any output.

out - points to the next file to be printed;

in – points to the next free slot in the

directory.

11/1/2024

T1 T2 T3 T4 T5 T6

A in critical region

B blocked

C blocked

B in critical region

C in critical region

P
ro

c
e
s
s

A

P
ro

c
e
s
s

B

P
ro

c
e
s
s

C

Critical Section Problem
Consider system of n processes {p0, p1, … pn-1}

Each process has critical section segment of code

Process may be changing common variables, updating table, writing

file, etc

When one process in critical section, no other may be in its critical

section

Critical section problem is to design protocol to solve this

Each process must ask permission to enter critical section in entry

section, may follow critical section with exit section, then remainder

section

Simple Tool Solution

Conceptually, any solution to

the critical section problem

can be viewed as to

constructing a simple tool,

called a “lock”

A process must acquire a lock

before entering a critical

section, and releases the lock

when it exits the critical

section

11/1/2024

do

 {

 acquire lock

 critical section

 release lock

 remainder section

 } while (TRUE):

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is
executing in its critical section,
then no other processes can be
executing in their critical sections

Solution to Critical-Section Problem

2. Progress - If no process is executing
in its critical section and there exist
some processes that wish to enter their
critical section, then the selection of the
processes that will enter the critical
section next cannot be postponed
indefinitely

Solution to Critical-Section Problem

3. Bounded Waiting - A bound must
exist on the number of times that
other processes are allowed to enter
their critical sections after a process
has made a request to enter its
critical section and before that
request is granted

Critical-Section Handling in OS
Two approaches depending on if kernel is

preemptive or non- preemptive

Preemptive – allows preemption of
process when running in kernel mode

Non-preemptive – runs until exits kernel
mode, blocks, or voluntarily yields CPU

Essentially free of race conditions in
kernel mode

Peterson’s Solution
The two processes share two variables:
int turn;
Boolean flag[2]

The variable turn indicates whose turn it is to
enter the critical section
The flag array is used to indicate if a process is
ready to enter the critical section. flag[i] = true
implies that process Pi is ready!

Int turn boolean flag

Peterson's Solution

11/1/2024

Process i
while (true)

{

flag[i] = TRUE;

turn = j;

while (flag[j] && turn == j);

//CRITICAL SECTION

flag[i] = FALSE;

//REMAINDER SECTION

}

Process j
while (true)

{

flag[j] = TRUE;

turn = i;

while (flag[i] && turn == i);

//CRITICAL SECTION

flag[j] = FALSE;

//REMAINDER SECTION

}

Int turn boolean flag

Peterson’s Solution (Cont.)

Provable that the three CS requirement are
met:

1. Mutual exclusion is preserved

Pi enters CS only if:

either flag[j]=false or turn=i

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

Recall Peterson’s Solution:

11/1/2024

Process i
while (true)

{

flag[i] = TRUE;

turn = j;

while (flag[j] && turn == j);

//CRITICAL SECTION

flag[i] = FALSE;

//REMAINDER SECTION

}

Acquire
a lock

Release the lock

Symmetric Multiprocessing Architecture

Centralized Shared-Memory

A Dual-Core Design

Multi-chip and multicore

Systems containing all

chips

Chassis containing

multiple separate

systems

Distributed Memory Multiprocessors

Synchronization Hardware

As discussed, software-based solutions (like
Peterson’s Solution) are not guaranteed to work
on modern computer architectures

Many systems provide hardware support for
synchronization

Uniprocessor systems

Multiprocessor systems

11/1/2024

Uniprocessor &Multiprocessor Systems

Disable interrupts

Currently running code would
execute without preemption

Generally too inefficient on
multiprocessor systems

11/1/2024

Memory Barriers
Memory model are the memory guarantees that a computer

architecture makes to application programs.

Memory models may be either:

Strongly ordered – where a memory modification of one
processor is immediately visible to all other processors.

Weakly ordered – where a memory modification of one
processor may not be immediately visible to all other
processors.

A memory barrier is an instruction that forces any change
in memory to be propagated (made visible) to all other
processors.

11/1/2024

Recall Peterson’s Solution

Two threads share the data:

boolean flag = false; int x = 0;

 Thread 1 performs

while (!flag) ;

print x

Thread 2 performs

x = 100;

flag = true

What is the expected output?

11/1/2024

Recall Peterson’s Solution
After Instruction Reordering • 100 is the expected
output.

However, the operations for Thread 2 may be
reordered:

flag = true; x = 100;

If this occurs, the output may be 0!

The effects of instruction reordering in Peterson’s
Solution

This allows both processes to be in their critical section
at the same time!

11/1/2024

Solution using Memory Barrier

To ensure Thread 1 outputs 100:

Thread 1 now performs

while (!flag)

memory_barrier();

print x

Thread 2 now performs

x = 100;

memory_barrier();

flag = true

11/1/2024

Hardware Instructions

Special hardware instructions that allow us

to either test-and-modify the content of a

word, or to swap the contents of two words

atomically (uninterruptibly.)

Test-and-Set instruction

Compare-and-Swap instruction

11/1/2024

Solution to Critical-section Problem Using
Locks

do

 {

 acquire lock

 critical section

 release lock

 remainder section

 } while (TRUE):

Modern machines provide special
atomic hardware instructions

Atomic = non-interruptible

Either test memory word and set
value

Or swap contents of two memory
words

Solution to Critical-section Problem Using
Locks

do

 {

 acquire lock

 critical section

 release lock

 remainder section

 } while (TRUE):

Uniprocessors – could disable interrupts

Currently running code would execute

without preemption

Generally too inefficient on

multiprocessor systems

Operating systems using this not

broadly scalable

Definition of test_and_set Instruction

1.Executed atomically
2.Returns the original value of passed parameter
3.Set the new value of passed parameter to
“TRUE”.

boolean TestAndSet (boolean *target)

 {

 boolean rv = *target;

 *target = TRUE;

 return rv:

 }

Solution using test_and_set()

do {

while (test_and_set(&lock))

 ; /* do nothing */

 /* critical section */

 lock = false;

/* remainder section */

 } while (true);

do {

while (test_and_set(&lock))

 ; /* do nothing */

 /* critical section */

 lock = false;

/* remainder section */

 } while (true); P
ro

ce
ss

 P
1

P
ro

ce
ss

 P
2

boolean TestAndSet (boolean *target)

 {

 boolean rv = *target;

 *target = TRUE;

 return rv:

 }

Atomic
Operation

Compare and Swap CAS

11/1/2024

void Swap (boolean *a, boolean *b)

 {

 boolean temp = *a;

 *a = *b;

 *b = temp:

 }S
w

a
p

 I
n

st
ru

ct
io

n

Swap the content of two words

The Swap instruction operates on the contents of

two words;

It is executed atomically.

A global Boolean variable lock is declared and is

initialized to false.

Each process also has a local Boolean variable key.

 while (true)

{

 key = TRUE;

 while (key == TRUE)

 Swap (&lock, &key);

 //critical section

lock = FALSE;

//remainder section

}M
u

tu
a

l
E

x
cl

u
si

o
n

w

it
h

 S
aw

p

Atomic operation

TRUELock

Address 1000

FALSE
Address 2000

Key TRUE
Address 3000

Key

Process 1 Process 2

FALSELock

Address 1000

TRUE
Address 2000

Key TRUE
Address 3000

Key

Process 1 Process 2

Swap function uses
two boolean variables
lock and key.
Both lock and key variables
are initially initialized
to false.

Solution using test_and_set()

do {

while (test_and_set(&lock))

 ; /* do nothing */

 /* critical section */

 lock = false;

/* remainder section */

 } while (true);

P
ro

ce
ss

 P
1

Acquire
a lock

Release the lock

Compare and Swap CAS

11/1/2024

 while (true)

{

 key = TRUE;

 while (key == TRUE)

 Swap (&lock, &key);

 //critical section

lock = FALSE;

//remainder section

}M
u

tu
a

l
E

x
cl

u
si

o
n

w

it
h

 S
aw

p

Acquire
a lock

Release the lock

Mutex Locks
Protect a critical section by first acquire() a lock then

release() the lock

Boolean variable indicating if lock is available or not

Calls to acquire() and release() must be atomic

Usually implemented via hardware atomic instructions

But this solution requires busy waiting

This lock therefore called a spinlock

Mutex Locks

T1 T2 T3

A in critical region

B blocked in a

busy waiting

Locked by A

P A

P B

Lock

A in non-critical region .

Locked by B

B in critical region

acquire() {

 while (!available;

 /* busy wait */

 available = false;

 }

release() {

 available=true;

 }

do {

 acquire lock

 critical section

 release lock

 remainder section

 } while (true);

Semaphore

11/1/2024

Semaphore
Synchronization tool that provides more

sophisticated ways (than Mutex locks)

for process to synchronize their

activities.

Semaphore S – integer variable can only

be accessed via two indivisible (atomic)

operations.

Semaphore as General Synchronization Tool

11/1/2024

wait (S)

{

while S <= 0

; // no-op

 S--;

}

Synchronization tool that does not require busy

waiting

Semaphore S – integer variable that can be accessed

only by two standard operations modify S: wait()

and signal()

 Originally called P() and V()

Less complicated

Can only be accessed via two indivisible (atomic)

operations

signal (S)

{

 S++;}

V stands for verhogen (“increase”),
P stands fro probeer (“try”)

A task desiring the semaphore performs a WAIT

operation

If the semaphore is available

(semaphore value > 0), the semaphore

value is decremented, and task

continues execution

If the semaphore s value is 0, the

task performing a WAIT on the

semaphore is placed in a waiting

list

A semaphore is a key that the code

acquires in order to continue execution

If a semaphore is already in use, the

requesting task is suspended until the

semaphore is released by its current

owner

In other words, the requesting tasks

says: Give me the key. If someone else

is using it, I am willing to wait for

it!

Semaphore as General Synchronization Tool

11/1/2024

wait (S)

{

while S <= 0

; // no-op

 S--;

}

signal (S)

{

 S++;}

Semaphore S;

//S initialized to 1

wait (S);

 {Critical

Section}

signal (S);

Semaphore with no Busy waiting
wait(S)

{

 value--;

 if (value < 0)

 {

 /*add this process

 to waiting queue*/

 block();}

}

Signal (S)

{

 value++;

 if (value <= 0)

 {

 /*remove a process P

 from the waiting queue*/

 wakeup(P);}

}

While a process is in its critical section, any other

process that tries to enter its critical section must

loop continuously in the entry code(busy waiting).

Rather than busy waiting, the process can block

itself.

The block() operation places a process into a

waiting queue associated with the semaphore, and

the state of the process is switched to the waiting

state.

Then, control is transferred to the CPU scheduler,

which selects another process to execute.

A process should be restarted when some other

process executes a signal() operation.

The process is restarted by a wakeup()

operation

The process is then placed in the ready queue.

Deadlock

Deadlock – two or more processes are waiting indefinitely for an

event that can be caused by only one of the waiting processes

Let S and Q be two semaphores initialized to 1

P0
wait(S);

wait(Q);

 ...

signal(S);

signal(Q);

P1
wait(Q);

wait(S);

 ...

signal(Q);

signal(S);

Starvation

Starvation – indefinite blocking

A process may never be removed from the

semaphore queue in which it is suspended

Priority Inversion

Priority Inversion – Scheduling problem when

lower-priority process holds a lock needed by

higher-priority process

Solved via priority-inheritance protocol

